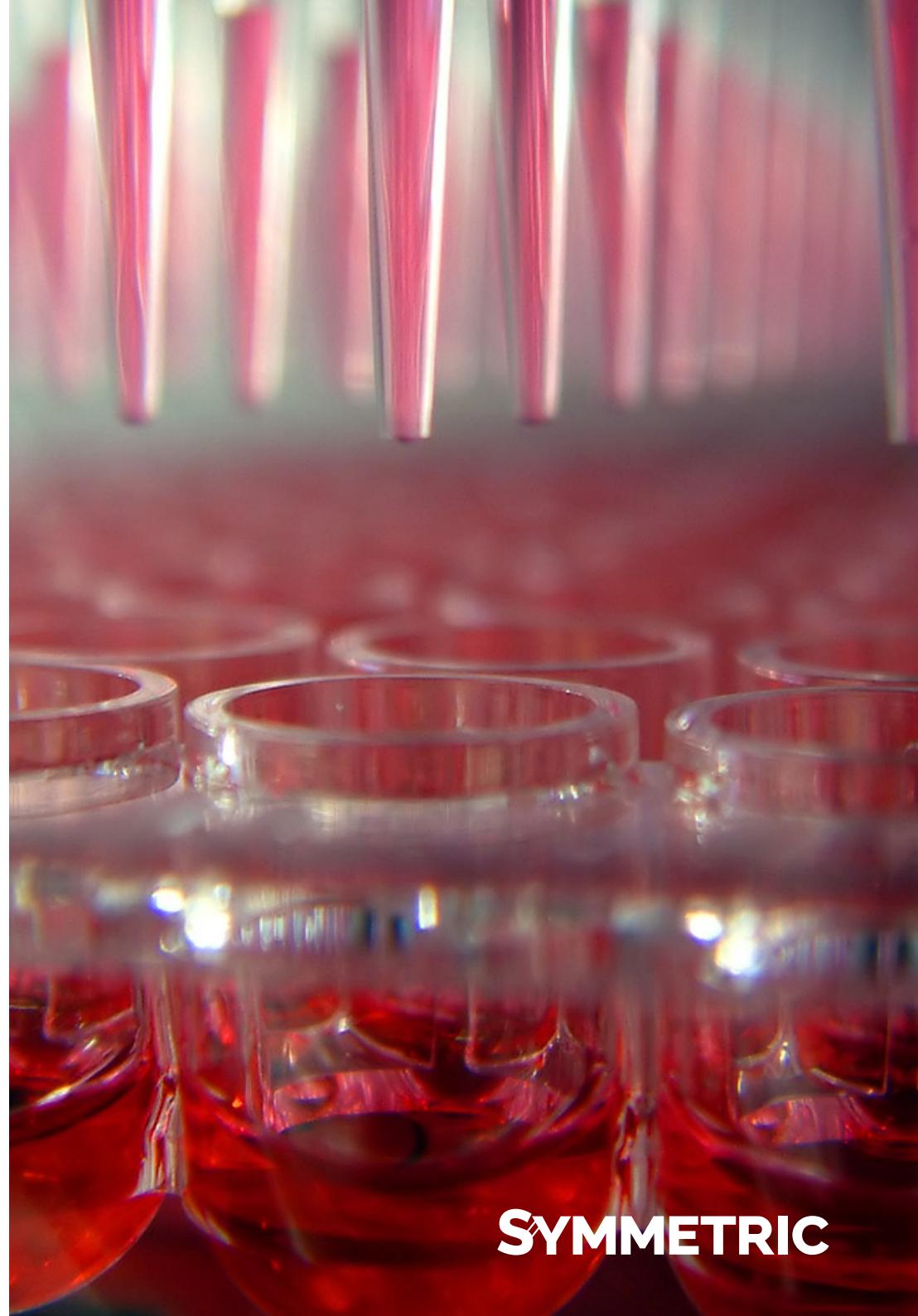
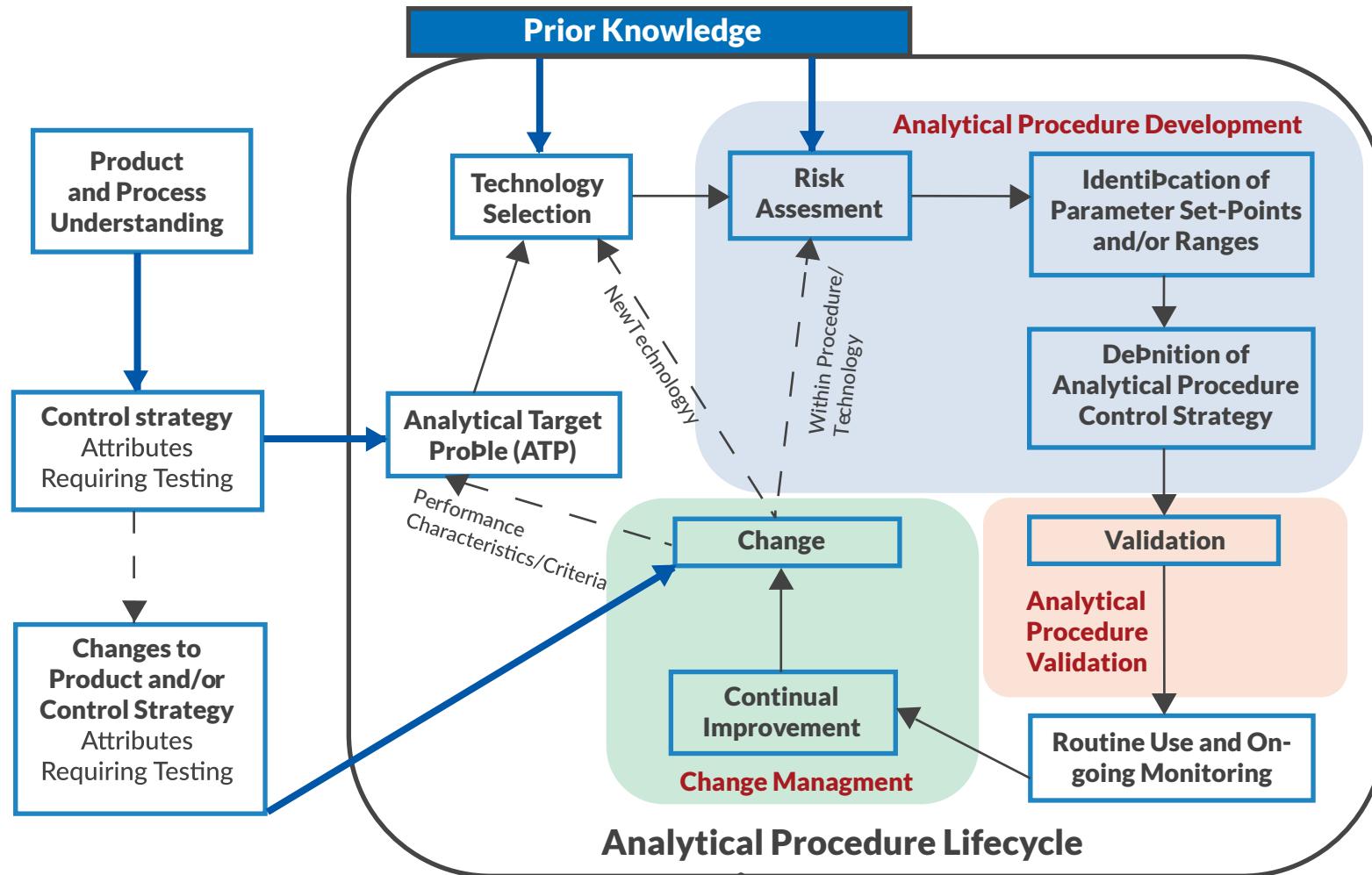


Sneak Peek

*Development and Validation
of Bioassays*



Steven Walfish


Statistical Outsourcing Services, USA,
Independent Consultant

ONLINE
TRAINING

SYMMETRIC

Source: Steven Walfish

Randomization

02

► A higher risk plate layout:

- Reference (R) and test samples (A & B) grouped together on the plate
- A plate effect is likely to impact both series so can only be used for very well characterized assays

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10		
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10		
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10		
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10		
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10		
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10		

► Strip plot design:

- Randomize samples to rows to decrease potential plate effects
- Reverse dilutions in the bottom half of the plate

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10		
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10		
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10		
R10	R9	R8	R7	R6	R5	R4	R3	R2	R1		
A10	A9	A8	A7	A6	A5	A4	A3	A2	A1		
B10	B9	B8	B7	B6	B5	B4	B3	B2	B1		

Source: Steven Walfish

Four factor study

- Analyst (1,2)
- Plate (1,2)
- Incubation Temp (38,40)
- Incubation Time (60,70)

Want to determine what factors are important to minimize bias

Response is difference from theoretical value of 100%

Source: Steven Walfish

Examples of Acceptance Criteria

04

Parameter	Acceptance Criteria
Repeatability & Intermediate Precision	Intra-run/overall %GCV should be within the expected limit
Accuracy or Dilutional Linearity	<ul style="list-style-type: none">▶ Relative bias at each potency level (% recovery) should be within the specified interval and a trend should not appear in relative bias across potency levels▶ A linear relationship should be observed between Estimated vs. Expected Potency with acceptable slope and Correlation coefficient▶ Intercept should not be significantly different from zero▶ The plot of Residuals vs. Estimated Potency should show a random distribution about zero
▶ Specificity/Selectivity	<ul style="list-style-type: none">▶ Formulation buffer should not show any response▶ Report for process intermediates, related and unrelated molecules
▶ Range	<ul style="list-style-type: none">▶ The range of the method is demonstrated when the precision, accuracy, and dilutional linearity of the method meet the given acceptance criteria at each potency level


Source: Steven Walfish

Examples of Acceptance Criteria

05

Replication

- Independent replicates of concentration response curves are more effective than repeat aliquots (pseudo replicates) at reducing bioassay variability)

- Allows an assessment of outlying concentration response curves
- The number of replicates should be determined based upon the contribution of replicate variability to overall bioassay variability

Source: Steven Walfish

Combining Multiple Relative Potency

- Method 2 – Independent Assay Results, Homogeneity Assumed)

$$W_i = \frac{4t^2}{L_i^2}$$

$$\bar{R} = \frac{\sum_{i=1}^n W_i R_i}{\sum_{i=1}^n W_i}$$

$$SE = \frac{1}{\sqrt{\sum_{i=1}^n W_i}}$$

$$\bar{R} \pm t_{n-1; \alpha/2} SE$$

Source: Steven Walfish

Registration

Sneak Peek

*Development and Validation
of Bioassays*

CLICK
HERE TO

Mliekarenská 9, 821 09
Bratislava, Slovak Republic
ID: 47 068 124
VAT no: SK2023741973
Office: +421 948 262 346

🛡 100% Secure payments

Your details are protected and safe with us. Taxes calculated at the checkout.

