

Sneak Peek

Statistics for Non-Statisticians

Steven Walfish

Statistical Outsourcing Services, USA,
Independent Consultant

ONLINE
TRAINING

SYMMETRIC

STATISTICAL ERROR

01

		Reality	
		Accept	Reject
Decision	Accept	Correct Decision Confidence ($1-\alpha$)	Type II Error (β) Consumer Risk
	Reject	Type I Error (α) Producer Risk	Correct Decision Power ($1-\beta$)

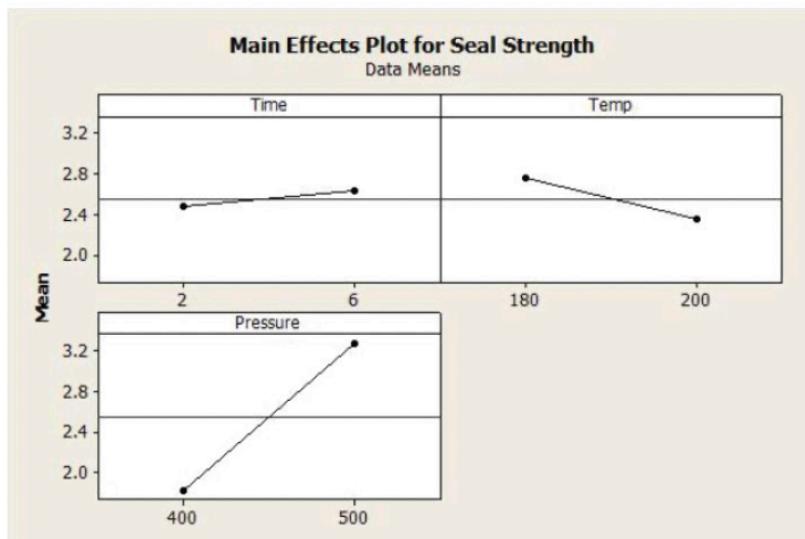
LINEAR REGRESSION

02

- Regression analysis is used to predict the value of one variable Y based on another variable(s) X
 - Y is dependent variable such as potency, concentration, purity, etc.
 - X is independent variable such as time
- Mathematically

$$y = \alpha + \beta x_i + \varepsilon_i$$

$$E(\varepsilon_i) = 0, VAR(\varepsilon_i) = \sigma^2$$



- Model parameters β_0 and β_1 are estimated from data.

ANALYSIS

03

Analysis of Variance for Seal Strength (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	4.57000	4.57000	1.52333	76.17	0.084
Time	1	0.04500	0.04500	0.04500	2.25	0.374
Temp	1	0.32000	0.32000	0.32000	16.00	0.156
Pressure	1	4.20500	4.20500	4.20500	210.25	0.044
2-Way Interactions	3	0.13000	0.13000	0.04333	2.17	0.454
Time*Temp	1	0.00500	0.00500	0.00500	0.25	0.705
Time*Pressure	1	0.08000	0.08000	0.08000	4.00	0.295
Temp*Pressure	1	0.04500	0.04500	0.04500	2.25	0.374
Residual Error	1	0.02000	0.02000	0.02000		
Total	7	4.72000				

- Accuracy (on average how close to target is a method?)
- Precision (how variable is a method?)
- Linearity (is the outcome measure proportional to the input amount?)
- Limit of Detection (the lowest amount that can be detected)
- Limit of Quantitation (the lowest amount that can be measured with suitable accuracy and precision)
- Range (the interval of amounts that can be measured with acceptable accuracy, precision and linearity)
- Specificity (“the ability to assess unequivocally the analyte in the presence of components which may be expected to be present[1]” in the execution of the method)

WHAT IS A MEASUREMENT SYSTEM ANALYSIS?

05

- A Measurement System Analysis (MSA) is the process through which the accuracy, precision, linearity, and stability of the system is assessed
- An MSA makes use of experimental methods to assess measurement system performance
- It is not simply a matter of sending the instrument out for calibration
- The purpose of the MSA is to qualify a measurement system for a specific data acquisition task
- Measurement system error must be small compared to process variation and specification limits

Registration

Sneak Peek

Statistics for Non-Statisticians

CLICK
HERE TO

Mliekarenská 9, 821 09
Bratislava, Slovak Republic
ID: 47 068 124
VAT no: SK2023741973
Office: +421 948 262 346

🛡 100% Secure payments

Your details are protected and safe with us. Taxes calculated at the checkout.

